
48 ; L O G I N : V O L . 3 3 , N O . 1

A D I T Y A K S O O D

insecurities in
 designing XML
 signatures
Aditya K Sood, a.k.a. 0kn0ck, is an independent securi-
ty researcher and founder of SecNiche Security, a se-
curity research arena. He is a regular speaker at con-
ferences such as XCON, OWASP, and CERT-IN. His other
projects include Mlabs, CERA, and TrioSec.

adi.zerok@gmail.com

XML digital signature technology is on high
heels nowadays, but potential insecurities
have been encountered because of insecure
programming practices. This article discuss-
es the weak spots in the coding of XML sig-
natures and related operations. The proce-
dural approach involves inline cryptography
to combat against application vulnerabili-
ties. Stress is placed on secure coding prac-
tices.

This article encompasses the practical problems in
designing XML signatures through the use of APIs.
XML signatures are used to provide security to data
of any kind whether XML or binary. The confiden-
tiality, integrity, and authenticity of the message
has to be preserved when designing a SOAP re-
quest for communication. XML API functionality
is very versatile but at the same time protection
measures have to be included to prevent loss of
data. Verification of data on the client end becomes
a formidable task owing to the persistence of er-
rors, leading to failure of the post-verification sign-
ing process. The prerequisites will be listed and
discussed from the application point of view to
thwart Web-based errors in XML signing of mes-
sages.

XML Digital Signatures

The digital signing of messages has become an effi-
cient security measure. XML signatures are being
used in an extensive manner to initiate a realm of
security. The implementation is done through
Apache structural libraries or XML digital signa-
ture APIs. However, using digital signatures is not
devoid of implementations problems. This article
serves to dissect the process of implementation of
XML API.

XML security is considered an intermediate
process in designing Java security components. As
such, the element of security is implemented be-
fore interaction with an application. The major
component is XWSS, which stands for XML Web
Service Security. This component functions direct-
ly with the Apache XML security provider.

To understand XWSS, let’s look first at the XML se-
curity stack.

The APIs are standardized under JSR 105. The two
pluggable components present are the Apache
XML Security Provider and the SUN Java Cryptog-
raphy Architecture (JCA) Provider. Both compo-

nents interface directly with the JCA component. The JSR 105 standard is
implemented through the Apache XML Security Provider, which ensures
proper interaction with the XWSS component. So, overall a message is
signed with an XML signature before an application receives it. The use of
XML APIs is an effective method for protecting data integrity. The cryptog-
raphy architecture followed is elucidated in Figure 1. The practical imple-
mentation is made possible through the design of cryptographic libraries
imported during the time of execution.

Let’s have a look at the XML signature packages:

■ The java.xml.crypto package contains classes that are used directly in
the implementation of design and generation and encryption of mes-
sages through the digital XML signature.

■ The java.xml.crypto.dsig package comprises interfacial components
that describe the cryptographic-related W3C specifications. It is used
in signing and validation of digital signatures.

■ The javax.xml.crypto.dsig.keyinfo package constitutes interfaces to
various key structures that are defined in the W3C XML digital signa-
ture recommendation.

■ The javax.xml.crypto.dsig.spec package contains classes for input pa-
rameters such as digests and keys.

■ The javax.xml.crypto.dom and javax.xml.crypto.dsig.dom packages
contain DOM-related classes.

The presentation of these various packages is initiated to trigger the JAVA
Cryptography Architecture. The XML signature structures are implemented
by the various interfaces provided by these crypto packages. For example,
the Key-related interfaces Keyinfo, KeyName, KeyValue, and PGPData are
defined on the basis of the W3C recommendations. Developers basically
generate abstract factories such as XMLSignatureFactory or KeyInfoFactory
based on the interfaces provided by these crypto packages. Developers also
create their own URI dereferencing implementation based on the URI deref-
erence class.

Secure coding is a precursor to secure implementation. Improper handling
and implementation can marginalize the entire structure of Web applica-
tions. These implementation problems are described next.

F I G U R E 1 : T H E C O M P O N E N T S U S E D I N X M L S I G N I N G

; LO G I N : F E B R UA RY 2 0 0 8 I N S E C U R ITI E S I N D E S I G N I N G X M L S I G N AT U R E S 49

Let’s have a look at the XML signature layout (see Fig. 2).

The example in Figure 2 clearly depicts the implementation structure of an
XML signature. It comprises a Keyinfo structure, which further incorporates
the KeyValue. The full structure is placed into an envelope for transmission
across the entities for secure communication. The XML signature specifica-
tions are based on the W3C recommendations and are applied directly on
defined benchmarks. The benchmarks here refer to the standard specifica-
tion provided by the W3C for effective structural design of XML documents
and related applications. It actually provides a hierarchical implementation
of XML objects. Also present is the signed info structure, which holds the
desired information bearing the signature. It is implemented in a canonical
form, in which a reference element is called by a URI. The value of the URI
is always undertaken as a string. If the string is empty or NULL, then the
root of the document is defined by that URI.

With this introduction to XML digital signatures, we can now dissect the
implementation problems that cause discrepancies in communication.

Parsing Anatomy in Instantiating a Signature

The very first problem occurs in developing the instantiation of an XML dig-
ital signature. Parsing is actually undertaken by a JAXP builder library. Usu-
ally the builder library is present in a default state to be used independently.
The developer can make a mistake in parsing an XML signature instance ob-
ject through the predefined builder library. The proper implementation hier-
archy is shown in Figure 3.The benchmark of standard XML implementa-
tion seen in Figure 3 is a basic procedure of designing an XML signature.
First a signature instance object is created, then the Name space is set. Once
this is done the builder library is called to parse the created object. Let’s have
a look at the code:

F I G U R E 2 : E X A M P L E O F A N X M L S I G N A T U R E

50 ; L O G I N : V O L . 3 3 , N O . 1

DocumentBuilderFactory dbf =

DocumentBuilderFactory.newInstance();

dbf.setNamespaceAware(true);

DocumentBuilder builder = dbf.newDocumentBuilder();

Document doc = builder.parse(new FileInputStream(argv[0]));

The code is stated in the hierarchy provided in Figure 3. The flaw occurs
mainly in setting NameSpaceAware true and in argument-passing in parsing
through file-streaming. File-streaming is a process in which file-handling
functions are dynamically used based on the variance of input. Because
argv[0], the value of the input parameter changes when different numbers of
arguments are passed. If the proper argument is not passed then the instanti-
ation of the XML signature goes awry because it affects the signature stats.
So parsing must be taken into account to hinder any further passing of er-
rors in the signature. If the instantiation is not done properly then it can
cause stringent errors in the application of the signature. So developers
should be careful in accomplishing this task.

Signature Specification Error Checks

Once the object is instantiated the next step is to specify a signature, which
then has to be validated. The major problem is that the error checks are not
implemented properly, and consequently wrong elements are not filtered
and get passed as such. For example, in the absence of a string check, an ap-
plication error occurs whenever a null string or large string is passed. Dur-
ing signature specification the error checks have to be executed by the de-
velopers to ensure that security is not constrained. Overlooked errors have
the potential to throw the entire application into disarray. Let’s look at the
code for better view:

NodeList nl = doc.getElementsByTagNameNS(XMLSignature.XMLNS, “Signature”);

if (nl.getLength() == 0) { throw new Exception(“Cannot find Signature element”);}

So handling errors during object implementation mutes their impact.

KeySelector Problem in the Validation Context

The validation context states that the context in which an XML signature in-
stance is validated by passing input parameters. For instance, if a developer
is using a DOM (Document Object Model), the developer has to instantiate
a DOM validation context instance. The problem occurs mainly in passing
the reference parameters to the generated validation context. In this a KeyS-

F I G U R E 3 : L O G I C A L H I E R A R C H Y F O R I M P L E M E N T I N G X M L S I G -
N A T U R E S

; LO G I N : F E B R UA RY 2 0 0 8 I N S E C U R ITI E S I N D E S I G N I N G X M L S I G N AT U R E S 51

elector KeyValue and a reference to a signature element are passed. The cod-
ing flaw occurs in passing the KeySelector pair and elements. This hampers
the process of validation and leads to false references.

The following code represents the implementation of KeyValue and KeySe-
lector structures:

Actually, KeySelector tries to find a suitable key for the validation of data.
The Key is stored in KeyValue. So a wrapper class is designed for applying
this. Remember, to subdue the impact of KeySelector problems, KeySelector
exceptions should be implemented with desired checks. The context is im-
plemented as follows:

Developers should take this into account in developing robust signatures.

Mismanagement in Assembling XML Signature Components
Once different components are designed and articulated with code, they
must be assembled into a singular object. This assembly is required because
the application of signature is possible only after the completion of the cen-
tralized object (i.e., XML signature object). As stated earlier, the application
calls DOM to get the handle of the required XML signature, which is possi-
ble through the XMLSignatureFactory object. Three steps must be complet-
ed prior to the implementation:

■ Signing the URI of an object
■ Specifying the digest method.
■ Transforming the enveloped layout

Whenever an application calls a specific code related to XML signatures
from the server then a URI is required to complete the action. The URI de-
scribes the root of the element. So if a mismatch occurs in passing argu-
ments then information can be leveraged because the infection vector is ran-
domized and it can direct the execution vector in any sphere of application.

The envelope transformation causes the signature to be removed prior to the
calculation of the signature value. Insecurity occurs in passing arguments.
In this example, no specific object is supplied but a null string is subjected
as an argument and the transformation object is set directly. This is bad pro-
gramming practice in the context of signature designing. Look at this code
snippet:

DOMValidateContext valContext = new DOMValidateContext (new KeyValueKeySelector(), nl.item(0));

private static class KeyValueKeySelector extends KeySelector {

public KeySelectorResult select(KeyInfo keyInfo, KeySelector.Purpose purpose, AlgorithmMethod

method,XMLCryptoContext context) throws KeySelectorException {

if (keyInfo == null) { throw new KeySelectorException(“Null KeyInfo object!”); }

SignatureMethod sm = (SignatureMethod) method;

List list = keyInfo.getContent();

for (int i = 0; i < list.size(); i++) {

XMLStructure xmlStructure = (XMLStructure) list.get(i); if (xmlStructure instanceof KeyValue) {

PublicKey pk = null; try { pk = ((KeyValue)xmlStructure).getPublicKey(); } catch (KeyException ke) {

throw new KeySelectorException(ke); }

// make sure algorithm is compatible with method

if (algEquals(sm.getAlgorithm(), pk.getAlgorithm())) { return new SimpleKeySelectorResult(pk); } } }

throw new KeySelectorException(“No KeyValue element found!”); }

static boolean algEquals(String algURI, String algName) {

if (algName.equalsIgnoreCase(“DSA”) && algURI.equalsIgnoreCase(SignatureMethod.DSA_SHA1)) {

return true; } else if (algName.equalsIgnoreCase(“RSA”) &&

algURI.equalsIgnoreCase(SignatureMethod.RSA_SHA1)) { return true; } else { return false;} } }

52 ; L O G I N : V O L . 3 3 , N O . 1

Reference ref = fac.newReference

(“”, fac.newDigestMethod(DigestMethod.SHA1, null),

Collections.singletonList (fac.newTransform(Transform.ENVELOPED,

(TransformParameterSpec) null)), null, null);

References should be applied with caution; the wrong reference points to
the wrong application entity, thereby creating considerable inefficiency. The
SignedInfo object should be created carefully with argument fusing. The
problem here is that the first parameter in the reference is supplied as [“ ”],
but it should be supplied with some proper argument or NULL (pointing to
no memory). Reference parameters should be supplied in a correct manner
with standard objects, as follows:

Reference ref = fac.newReference(“#object”,

fac.newDigestMethod(DigestMethod.SHA1, null));

Once the SignedInfo object is created, key generation comes next. The keys
should be handled and generated in a standard manner in the context of the
specific application:

KeyInfoFactory kif = fac.getKeyInfoFactory(); KeyInfo object:

KeyValue kv = kif.newKeyValue(kp.getPublic());

KeyInfo ki = kif.newKeyInfo(Collections.singletonList(kv));

XMLSignature signature = fac.newXMLSignature(si, ki);

Strict vigilance is required for assembling XML signature components. The
issues presented here cover some of the major problems related to XML sig-
nature designing.

Conclusion
Application security requires a well-planned and security-oriented coding
layout to work efficiently. Dethroning insecure vectors requires secure cod-
ing practices. Application functionality can be jeopardized by the absence of
even one of these factors. Protection should be applied through effective
mechanisms or by adopting a security development life cycle when design-
ing applications. Secure coding is considered to be a good proactive defense
in combating application flaws.

F U RTH E R R E A D I N G

[1] M. Bartel, J. Boyer, B. Fox, B. LaMacchia, and E. Simon, “XML-Signature
Syntax and Processing,” in W3C Recommendation, World Wide Web Con-
sortium, 12 February 2002, D. Eastlake, J. Reagle, and D. Solo, editors:
http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/.

[2] T. Imamura, B. Dillaway, and E. Simon, “XML Encryption Syntax and
Processing,” in W3C Recommendation, World Wide Web Consortium, 10
December 2002, D. Eastlake and J. Reagle, editors: http://www.w3.org/
TR/2002/REC-xmlenc-core-20021210/.

[3] D. Eastlake and K. Niles, Secure XML: The New Syntax for Signatures and
Encryption (Upper Saddle River, NJ: Pearson Education, 2002).

[4] J. Rosenberg and D. Remy, Securing Web Services with WS-Security: De-
mystifying WS-Security, WS-Policy, SAML, XML Signature and XML Encryp-
tion (Indianapolis: Sams, 2004).

[5] http://java.sun.com/security/javaone/2002/javaone02.3189-jsr105-bof.pdf.

SignedInfo si = fac.newSignedInfo (fac.newCanonicalizationMethod (CanonicalizationMethod. -

INCLUSIVE_WITH_COMMENTS, (C14NMethodParameterSpec) null),

fac.newSignatureMethod(SignatureMethod.DSA_SHA1, null), Collections.singletonList(ref));

; LO G I N : F E B R UA RY 2 0 0 8 I N S E C U R ITI E S I N D E S I G N I N G X M L S I G N AT U R E S 53

